
RSRE
IY:ThiORANDUO No. 4261

c ":' '': IGNALS & RADAR
\ ,.oESTABLISHMENT

CAUSIAG AND PREVENTING VIRUSES IN
COMPUTER SYSTEMS

'); . t , Author: S R Wiseman

PROCUREMENT EXECUTIVE,

:AINISTRY OF DEFENCE,

.R S RE MALVERN,

WORCS,

I34
UNLIMITED

CONDITIONS OF RELLASE
0037443 BR- 109824

.... U

COPYRIGHT (c)
1988
CONTROLLER
HMSO LONDON

.... Y

Reports quoted are not necessarily available to members of the public or to commercial
organisations.

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum L+261

Title: Causing and Preventing Viruses in Computer Systems

Author: S R Wiseman

Date: January 1989

ABSTRACT

Viruses may attack computer systems and carry with them a
variety of symptoms. Details of the many ways in which
they spread are given and it is shown how this is prevented
in conventional systems using procedural controls. More
effective measures, which are to be employed in the SMITE
secure system, are also described.

%,r!S 04,',l

I 21, : , . ' .

! ' t(

Copyright A-I _

Controller HMSO London
1989

1. Introduction

This paper is about software viruses. These reside in programs on disc
and, when the program is run, propagate themselves and spread to other
programs. Apart from duplication, a virus can cause a wide variety of
symptoms to appear, ranging from the benign to the catastrophic. If
computers form part of a distributed system, a virus may propagate itself
across the network to infect software on another machine, forming a
plague.

Since a virus is just a piece of code which hides itself inside the code of
a program, it is very difficult to identify infected programs. In any event
programs used to examine and heal other programs may themselves be
infected, so the virus can spread as fast as it is eliminated.

This paper details how a virus can propagate through a system, so that
the enormity of the problem can be appreciated. Next, some measures are
suggested which largely overcome the problem in conventional system
architectures. The SMITE system, which offers a more complete solution, is
then described. This is a system which has been designed for high
assurance multi-level secure applications [Wiseman86].

2. Viral Infections

An infection is introduced into a system by persuading an authorised user
of the system to run an infected program. This is usually done by an
application writer or distributor planting the virus in copies of new
programs. When the legitimate users execute these programs the virus
spreads. The initial viral spore may disguise the source of the infection by
erasing itself from the original program.

A virus propagates by altering programs, eithex directly by changing their
code on disc or indirectly by altering the association between names and
programs, which is usually held in a directory. This latter method is
usually overlooked, and even excluded by some definitions [CohenS4]. but in
most systems it is easier to exploit.

The programs in question may be executable images. bootstrap loaders, the
operating system image, command files or any other list of instructions. A
virus can only propagate if, when it executes, it has the ability to alter
these programs or the directories that name them. It follows that a virus
placed in a bootstrap or operating system image is unstoppable, because it
has the ability to alter any part of the disc. On systems that offer no
file protection, a virus in an ordinary program can also propagate easily.

Using the direct approach to propagation (figl), a virus alters the
instructions that constitute the uninfected program. The program is
modified so that the code of the virus is executed before the program's
usual function is carried out. In this way the program appears to behave
normally.

mn mmmmnm IW . I

this is an uninfected program

Ivirus this is an uninfected program

Fig 1: A virus can propagate by altering programs.

With the indirect approach (fig2), a virus alters the mapping between the
identifiers that users use to name programs and the programs' code. Thus
rather than alter a program in situ, a new program is created by copying
the original along with the virus code. This new program is then given
the same name as the original, so in future users will run the infected
program.

"pros.exe" 61

virus program

Fig2: A virus can propagate by altering names.

On some systems it is possible to chain from one program to another. In
this case the virus need not copy the original program. Instead, the
original program is given another name and a new program, which
contains the virus code and chains to the original program, is created
(fig3). This new program is then given the name of the original. This
technique really only works if the original program, with the new name.
goes undetected. However this is usually simple on big systems where
there are many system files that have strange names and one more will
not be noticed.

"proS.exe" -.-----.- virus (chain "important")

"important.exe" o p

Fig3: A virus can propagate by changing names and chaining.

A virus is more likely to go unnoticed, especially on small systems, if its
code is small. A sudden increase in disc space used is an indication that
a virus is at work. However viruses can be very small and could occupy
the spare bytes in the file which inevitably arise when the program's size
is rounded up to a whole number of disc sectors.

2

A virus must make sure that it does not infect programs that are already
infected. If this happens disc space will be eaten away and the programs
will take longer to execute as each infection must run before the main
program. However, a virus will generally only be able to determine
whether the latest infection given to a program is a copy of itself. A
virus cannot detect whether a program is infected by another virus. Thus
if two or more viruses attack a system at the same time, program sizes
will grow as each virus in turn infects them.

When an infected program is executed, the virus may propagate itself, in
the manner just described, and produce various side effects. Essentially the
virus inherits all the rights and privileges of the user who executes it,
though a virus in a bootstrap can of course do anything. In this position
it can delete or alter files, release sensitive information to others or
masquerade as the user and request services or send fake messages. The
possibilities are endless. Usually the virus will not activate itself in an
obvious manner until some time has passed, perhaps after a certain
number of generations, in order that the virus may be spread widely
before being detected.

3. Conventional Safeguards

This section considers how protection facilities offered by convention.]
systems can be used to protect against viruses.

The best place for a virus is in the bootstrap or system image on disc. If
the system has no file protection, these cannot be protected from a viral
spore in an ordinary program. In fact, such systems are wide open to
attack and nothing can be done apart from preventing the entry of the
viral spore by procedural means. That is always use write protect tabs
whenever possible and never run programs which have not come from a
reputable dealer and hope that they have not been infected inadvertently.

In some systems the bootstrap will pull in a system image from a floppy
disc or tape if one is present in the drive when the system is booted. In
this case the program on the floppy disc is executed with full access to
the machine including the main disc. Therefore, regardless of the protection
offered by the operating system on the main disc, a virus or viral spore
on the floppy disc can propagate to the main disc. The only safeguard
here is again procedural: ensure that the system is never booted while a
floppy disc is present in the drive.

Note that, if the system does not extend file protection to floppy discs,
an ordinary program could write a bootstrap to any floppy disc in the
drive. Therefore the user should not consider some floppy discs to be safe
because they are believed to not contain a bootstrap.

Computers in distributed systems may load themselves from a boot server.
To do this they broadcast a request on the network asking for a system
image. The boot server responds to such requests by sending a copy of
the operating system to the requestor. However there is nothing to stop
other computers masquerading as boot servers. They may send infected
system images to the requestor before the proper boot server responds.

3

A possible solution to this is to place the boot server and systems that
use it behind an intelligent network bridge which filters out data sent to
machines which are not fully booted. Once boot"I these machines change
their network address to one that the bridge lets through. This protects
the machines behind the bridge from attack by general machines on the
network until they are able to fend for themselves.

In systems that offer file protection more can be done to combat the
spread of a virus. Firstly, an infected program executed by a user is
prevented from propagating the virus to programs wh.rb the user cannot
modify or rename. Protection of this sort is usually found in multi-user
systems.

Simple protection facilities, like read only and execute only access rights.
do not in fact prevent a program being contaminated by a virus
inadvertently executed by the program's owner. This is because the virus,
which inherits the owner's privileges, simply alters the program's access
rights to allow modification. Once the virus has been inserted the access
rights can be restored as if nothing has happened.

Some more sophisticated operating systems have protection mechanisms
which can be used to prevent the owner of a program from modifying its
protection attributes. In these systems, programs should be set so that no
user can modify them or alter their protection. This prevents a virus from
spreading using the direct method, but not the indirect method.

The indirect method of spreading a virus relies on the ability to alter
how programs are named. Operating systems which offer file protection
include limited protection of directories. Using these facilities it is possible
to prevent a virus spreading to programs named in directories which
cannot be accessed by the user. However, users are generally allowed to
change their own directories, because this is how they create new files and
delete old ones. Therefore a virus can spread, using the indirect method.
to any program named in the user's directory.

If the operating system's file protection mechanism could be used to
prevent a program from being renamed, this would offer a partial solution
to the problem of indirect propagation. However this would make program
maintenance impossible.

The problem arises because directories are fundamental to the operation of
conventional systems, and are readily exploited by viruses. Therefore, little
can be done to protect the user who executes software of dubious origins.

Procedural safeguards can be imposed to ensure that viruses do not spread
to the programs which are supplied as common system utilities in
multi-user systems. Simple file protection mechanisms prevent ordinary users
spreading a virus to these, but special safeguards are needed to prevent
their owner, usually the system manager, from doing so.

4

The system manager must not execute any program which could contain a
virus or viral spore. The easiest way to ensure this is to limit the system
manager to executing just two programs, one to remove old programs and
one to install new ones. These programs would be supplied with the
system and are, hopefully. virus free. The system manager should not
install any program which is of dubious origin, because this could infect
the programs of the users who run it. Under no account should the
system manager execute any other program, especially those of other users.
as this may spread a virus.

Other mechanisms,based upon encryption, have been proposed for
combatting viruses, for example [Pozzo&Gray87]. These aim to detect
changes to programs either by encrypting them or attaching cryptographic
checksums to them. However these methods have a serious effect on
performance and do not protect from indirect virus attacks.

4. SMITE's Defence System

The SMITE secure system, and the Flex environment on which it is based
[Fosterot--.82], does not use directories to access files. Instead unforgeable.
unalterable addresses, or capabilities [WisemanSSa], are used to directly
address objects such as text and programs. Editors, compilers and other
programs are able to manipulate these capabilities and store them on disc
along with other data.

A capability based backing store can be used to support a modular
compilation system [HarroldSS] and editors for structured text [CoreS7].
without the need for names and directories [Stanley85a]. However.
directories are required for naming some text files which contain
capabilities for programs. Such a system is still, therefore, vulnerable to
virus attacks.

The SMITE backing store [\Viseman88b] is organised on a write once
basis. That is, when data is stored in the backing store, some free space
is found to accommodate it. A capability which refers to the data is
created and returned as a result of the store operation. The data is
retrieved by applying a load operation to the capability. Note that
without the capability, the data cannot be retrieved and capabilities are
themselves protected and cannot be forged.

Programs are free to use the backing store to pass parameters and save
temporary values. Capabilities are used to name backing store data
directly, rather than indirectly through a directory. This means programs
do not need to be able to alter directories in order to carry out their
function. It is therefore practical to consider restricting the ability to altel
directories to the user at the command level.

This method of working, where names are used relatively infrequently, is
quite different to that of the conventional operating system. However it
only works if it is well integrated into the system as a whole. This is
the case in the Flex system, which serves as a demonstration that the
method is not only feasible but to some extent desirable (StanleyS.5bl.

Restricting directory updating to the command level, prevents a virus from
propagating indirectly by giving an infected version -f a program the name
of the original. It also has the advantage of preventing Trojan Horses
[Boebert&Kain85] from expiuiting the signalling channels inherent in the use
of names in shared directories.

The SMITE system provides the Trusted Path mechanism
[\Visemant.at .88] as a means for software to determine whether it has
been invoked directly by the user at the command level, or indirectly by
some program that the user has run. The Trusted Path is a command
interface which is shown to be free of Trojan Horses, that is it obeys
commands if and only if the user directs it to do so. This is part of the
secure system and is installed and initialised in a way which cannot be
subverted.

The software module which is responsible for manipulating directories may
be incorporated into many programs, as well being used by the command
level software. It allows software to look up names in a directory at any
time. However, before updating a directory it uses the Trusted Path
mechanism to ensure that it is being invoked directly as part of the
command level.

The use tf canabilities to name objects directly, also extends across
networks [Foster&CurrieS6], as does the Trusted Path mechanism. Theiefore
a virus in a SMITE program is completely contained, and in effect cannot
qualify as a virus.

5. Conclusions

A virus can spread either directly, by altering program code, or indirectly
by altering how programs are named. In operating systems that have no
file protection, nothing can be done to prevent a virus spreading, other
than to avoid software of dubious origin. File protection mechanisms, such
as those found in multi-user systems. can be used to prevent the spread
of viruses from one user to another. However, they do not stop a virus
spreading to a user's programs if the user executes an infected program.

A novel method of working is proposed for the SMITE secure system. in
which objects in the backing store are rarely accessed by a textual name.
Such an environment is successfully employed in the Flex system. This is
achieved by offering a backing store that uses capabilities to address data
directly, so programs no longer need to be able to update directories in
order to communicate. It is sometimes necessary to update textual names,
but this is made the direct responsibility of the user using a Trusted Path
mechanism, and cannot be performed by a program.

Acknowledgements

Thanks to Antony Martin for help in formulating the ideas presented here
and for suggesting a solution to the network booting problem.

6

References

W E Boebert & Y V Kain.
"Secure Computing: The Secure Ada Target Approach"

Scientific Boneyweller Vol 6 Num 2 July 1985 ppl-17

F Cohen.
"Computer Viruses: Theory and Experiments".
7th National Computer Security Conference.
September 1984, pp240- 2 6 3

also: Computers & Security, Vol 6, Num 1,
February 1987, pp 2 2 .. 3 5

P NV Core,
"User Extensible Graphics Using Abstract Structure"

RSRE Report 87011, August 1987

3 N1 Foster, I F Currie & P W Edwards,
"Flex: A Working Computer with an Architecture Based on Procedure

Values",
Procs. Int, Workshop on High Level Language Computer Aichiiecturc.

Fort Lauderdale, Florida. Dec 1982.
(Also RSRE Memo 3500. July 1982)

J M Foster & I F Currie,
"Remote Capabilities in Computer Networks".
RSRE Memo 3947. March 19S6

C L Harrold,
"The SMITE Modular Compilation System,
RSRE Memo 4145. March 1988

M \I Pozzo & T E Gray
"An Approach to Containing Computer Viruses"

Computers & Security. Vol 6. Num 4

August 1987. pp 3 2 1 ..3 3 1

NI Stanley.
"Extending Data Typing Beyond the Bounds of Programming

Environmentzs",
RSRE Memo 3878. September 1985 (a)

N1 Stanley,
"The Use of Values without Names in a Programming Support

Environment",
RSRE Memo 3901. November 1985 (b)

S R Wiseman,
"A Secure Capability Computer System",
Procs. IEEE Symp. on Security and Privacy.
Oakland. CA, April 1986

S R Viseman.
"Protection and Security Mechanisms in the SMITE Capability
Computer",
RSRE Memo 4117. January 1988 (a)

S R Wiseman.
"The SMITE Object Oriented Backing Store".
PSRE Memo 4147, March 1988 (b)

S R Wiseman. P F Terry. A V Wood &- C L Harrold
"The Trusted Path between SMITE and the User",
Procs. IEEE Symp. on Security and Privacy,
Oakland, CA, April 1988

DOUMEIT CONTROL SHEET

Overall security classification of sheet UNCLASSIFIED
Ove al) Se urk y las if ca~ on o(he t I............

(As far as possible this sheet should contain only unclassified inforuation. If it is necessary ic r-er

classified information, the box concerned must be marked to indicate the classification eg (R) (C) 0- (S)

1. DIC Reference (if known) 2. Originator's Reference 3. Agency Reference 4. Report Secu,.t,
Memo 4261 1 UiC Class 4;ca' :

5. Originator's Code (if 5. Originator (Corporate Author) lame sld Location
known) ROYAL SIGNALS & RADAR ESTABLISHMENT

7784000 ST ANDREWS ROAD,GREAT MALVERN, WORCESTERSHIRE WRi L Pz

5a. Sponsoring Agency's 6a. Sponsoring Agency (Contract Authority) Name and Location

Code (if known)

7, Title
CAUSING AND PREVENTING VIRUSES IN COMPUTER SYSTEMS

7a. Title in Foreign Language (in the case of translations)

7t. Presented at (fop conference rapers) Title, place and date of conference

B. Author 1 Surnaope, initil s I 9(a) Author 2 9(t) Authors 3,4... 10. Date Dc. re,

WISEMAN 1989,0 F

11. Contract Number 12. Period 13. Project 14 Other Reference

15. Distribution statement

UNLIMITED

Oescrivtor (or keywords)

continue on separate Piece of Pacer

Ab.trmct

Viruses mzy attack computer systems and carry with them a variety of
symptoms. Details of the many ways in which they spread are given
and it is shown how this is prevented in conventional systems using
procedural controls. More effective measures, which are to be
employed in the SMITE secure system are also described.

SSo/14k

